982 research outputs found

    Sexually transmitted infection risk exposure among black and minority ethnic youth in northwest London: findings from a study translating a sexually transmitted infection risk-reduction intervention to the UK setting.

    No full text
    OBJECTIVES: Young black women are disproportionately affected by sexually transmitted infections (STI) in the UK, but effective interventions to address this are lacking. The Young Brent Project explored the nature and context of sexual risk-taking in young people to inform the translation of an effective clinic-based STI reduction intervention (Project SAFE) from the USA to the UK. METHODS: One-to-one in-depth interviews (n = 37) and group discussions (n = 10) were conducted among men and women aged 15-27 years from different ethnic backgrounds recruited from youth and genitourinary medicine clinic settings in Brent, London. The interviews explored the context within which STI-related risks were assessed, experienced and avoided, the skills needed to recognise risk and the barriers to behaviour change. RESULTS: Concurrent sexual partnerships, mismatched perceptions and expectations, and barriers to condom use contributed to STI risk exposure and difficulties in implementing risk-reduction strategies. Women attempted to achieve monogamy, but experienced complex and fluid sexual relationships. Low risk awareness, flawed partner risk assessments, negative perceptions of condoms and lack of control hindered condom use. Whereas men made conscious decisions, women experienced persuasion, deceit and difficulty in requesting condom use, particularly with older partners. CONCLUSIONS: Knowledge of STI and condom use skills is not enough to equip young people with the means to reduce STI risk. Interventions with young women need to place greater emphasis on: entering and maintaining healthy relationships; awareness of risks attached to different forms of concurrency and how concurrency arises; skills to redress power imbalances and building self-esteem

    Educating Accounting Students On Computer Crime And Ethics

    Get PDF
    Accounting fraud has been prevalent in the popular press for the past several years.  The accounting profession has begun to stress the importance of ethics because of this negative press.  Some state boards of accountancy have begun requiring ethics courses as part of continuing education to maintain certification and licensing.  Many accounting frauds are in the form of computer crime.  Accounting students must be made aware of various types of frauds, including computer crimes, how frauds are prevented and detected, and why ethics are important in the accounting profession.  This paper describes several categories of computer crimes and technological means of preventing and detecting these crimes.  Computer crimes and prevention and detection means are as varied as the perpetrators who commit these crimes.  Finally, this paper suggests using a combination of three courses to educate accounting students on computer crime and ethics for preparation for their accounting careers.  These three courses are a traditional Accounting Information Systems (AIS) course, a fraud prevention and detection or forensic accounting course, and an accounting or business ethics course.  These three courses, used in concert, will provide accounting students with the tools they need when they are faced with incidents of fraud or ethics decisions during their accounting careers

    Procedures and fees for copies of records

    Get PDF
    This project will establish an appropriate fee schedule for the duplication of records and establish a uniform procedure for collection of these fees at the South Carolina Vocational Rehabilitation Department

    Time-Average Measurement of Velocity, Density, Temperature, and Turbulence Using Molecular Rayleigh Scattering

    Get PDF
    Measurement of time-averaged velocity, density, temperature, and turbulence in gas flows using a nonintrusive, point-wise measurement technique based on molecular Rayleigh scattering is discussed. Subsonic and supersonic flows in a 25.4-mm diameter free jet facility were studied. The developed instrumentation utilizes a Fabry-Perot interferometer to spectrally resolve molecularly scattered light from a laser beam passed through a gas flow. The spectrum of the scattered light contains information about velocity, density, and temperature of the gas. The technique uses a slow scan, low noise 16-bit depth CCD camera to record images of the fringes formed by Rayleigh scattered light passing through the interferometer. A kinetic theory model of the Rayleigh scattered light is used in a nonlinear least squares fitting routine to estimate the unknown parameters from the fringe images. The ability to extract turbulence information from the fringe image data proved to be a challenge since the fringe is broadened by not only turbulence, but also thermal fluctuations and aperture effects from collecting light over a range of scattering angles. Figure 1 illustrates broadening of a Rayleigh spectrum typical of flow conditions observed in this work due to aperture effects and turbulence for a scattering angle, chi(sub s), of 90 degrees, f/3.67 collection optics, mean flow velocity, u(sub k), of 300 m/s, and turbulent velocity fluctuations, sigma (sub uk), of 55 m/s. The greatest difficulty in processing the image data was decoupling the thermal and turbulence broadening in the spectrum. To aid in this endeavor, it was necessary to seed the ambient air with smoke and dust particulates; taking advantage of the turbulence broadening in the Mie scattering component of the spectrum of the collected light (not shown in the figure). The primary jet flow was not seeded due to the difficulty of the task. For measurement points lacking particles, velocity, density, and temperature information could reliably be recovered, however the turbulence estimates contained significant uncertainty. Resulting flow parameter estimates are presented for surveys of Mach 0.6, 0.95, and 1.4 jet flows. Velocity, density, and temperature were determined with accuracies of 5 m/s, 1.5%, and 1%, respectively, in flows with no particles present, and with accuracies of 5 m/s, 1-4%, and 2% in flows with particles. Comparison with hotwire data for the Mach 0.6 condition demonstrated turbulence estimates with accuracies of about 5 m/s outside the jet core where Mie scattering from dust/smoke particulates aided in the estimation of turbulence. Turbulence estimates could not be recovered with any significant accuracy for measurement points where no particles were present

    Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    Get PDF
    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements

    Fast solver for diffusive transport times on dynamic intracellular networks

    Full text link
    The transport of particles in cells is influenced by the properties of intracellular networks they traverse while searching for localized target regions or reaction partners. Moreover, given the rapid turnover in many intracellular structures, it is crucial to understand how temporal changes in the network structure affect diffusive transport. In this work, we use network theory to characterize complex intracellular biological environments across scales. We develop an efficient computational method to compute the mean first passage times for simulating a particle diffusing along two-dimensional planar networks extracted from fluorescence microscopy imaging. We first benchmark this methodology in the context of synthetic networks, and subsequently apply it to live-cell data from endoplasmic reticulum tubular networks.Comment: 14 pages, 6 figure
    corecore